Hemicelluloses

FS630
Dr Nicolas Bordenave
Room 3151
nbordena@purdue.edu

Outline

• Sources, characteristics and common properties
• Xylans
• Mannans
• Xyloglucans
• Mixed-linkage β–D-glucans
• Hemicellulose derivatives and their applications
Origin and Sources

Plant/wood cell:

LM: intercellular space
P: Primary wall (lignins, pectins, hemicelluloses, little cellulose)
S1
S2 Secondary wall (mainly cellulose + pectins, hemicelluloses, lignins)
S3

50% of the biomass of annual and perennial plants

Origin and Sources

Hemicellulose = polysaccharides found in cell-walls of plant that are not cellulose (polymer of β(1,4)-D-glucose) or pectins (polymer of galacturonic acid), including some gums

Great variety of hemicelluloses with various building blocks

Pentoses: xylose, arabinose
Hexoses: glucose, mannose, galactose, rhamnose (and their corresponding uronic acids)

Mainly D stereoisomer
α or β linkages
(1→4), (1→3) or (1→6) linkages
Pyranose or furanose forms for hexoses

HemicelluloseS
Origin and Sources

4 main categories depending on the backbone-chain composition:

- Xylans
- Mannans
- β-glucans
- xyloglucans

Main industrial applications so far: conversion into sugars, chemicals, fuels and sources of heat energy

Applications as biopolymers not yet exploited on industrial scale

Extraction

- most often in hot alkali (NaOH/H₂O₂),
- sometimes in hot water (xyloglycan gums) or steam treatments

Structural features:

- backbone chain,
- side-chain types and distribution,
- glycoside linkages types and distribution,
- Mw

Characterization by

- HPSEC-MALLS,
- MALDI-TOF MS,
- 13C-CP/MAS NMR
Outline

• Sources, characteristics and common properties
 • Xylans
 • Mannans
 • Xyloglucans
 • Mixed-linkage β–D-glucans
 • Hemicellulose derivatives and their applications

Xylans

Heteropolymers possessing a β-(1→4)-D-xylopyranose backbone

⇒ Homoxylans: true homopolymer occurring in seaweeds

\[\beta-(1\rightarrow3)\text{-D-xylan} \]

\[\beta-(1\rightarrow3, 1\rightarrow4)\text{-D-xylan} \]
Xylans

Glucuronoxylans: isolated from hardwoods

1. In the native state, xylan is supposed to be O-acylated, but the acetyl groups are split during the alkaline extraction ⇒ partial or full water-insolubility

![4-O-methyl-D-glucurono-D-xylan](image)

Arabinoxylans: in a variety of the main commercial cereals (wheat, rye, barley, oat, rice, corn, sorghum,...) = major hemicellulose component of flour and bran (dietary fibers).

Complex heteroxylans

Xylans

Potential resources: by-products of forestry and pulp-and-paper industry (forest chips, wood meal and shavings), annual crops (straw, stalks, husk, hulls, bran,...)

Extractability restricted due to physical and/or covalent interactions with other cell-wall constituents (e.g. xylan can be ester-linked to lignin through uronic acid side-chains)
Xylans

Can be surface active agents: most xylans form oil in water emulsions with stability comparable to that of Tween 20. Low foamability.

Role in bread making: affect properties of the dough and texture/end-product quality of baked products.

Biological activity: part of dietary fibers

Potential applications:
- Polymers: “super gel” for wound dressing, micro- and nanoparticles for controlled drug delivery
- Oligosaccharides: novel functional food ingredients modifying food flavor and physicochemical characteristics: model compounds for enzymatic assays

Outline

• Sources, characteristics and common properties

• Xylans

• Mannans

• Xyloglucans

• Mixed-linkage β–D-glucans

• Hemicellulose derivatives and their applications
Mannans

Heteropolymers possessing a β-(1→4)-D-mannopyranose backbone

\Rightarrow Homopolymer: rare

\Rightarrow Galactomannans: abundant in cell walls of storage tissues, notably those from the endosperm of leguminous seeds (guar, locust bean, tara gum,...). The amount of galactose residues influences solubility, viscosity and interactions with other polysaccharides.

\Rightarrow Glucomannans: major component of the secondary cell walls of softwoods

Interactions properties: gums from konjac, guar or locust bean affect the pasting behavior of starch (RVA method)

Biological activity: guar and konjac gums show ability to lower the level of plasma and liver cholesterol. Other mannans show immunomodulatory activities.
Mannans

Potential applications: konjac gum modify the Tg of sugar/polysaccharide mixtures ⇒ potential replacement of gelatin in sugar, hard-boiled and frozen confectionery products

Outline

• Sources, characteristics and common properties
• Xylans
• Mannans
• Xyloglucans
• Mixed-linkage β-D-glucans
• Hemicellulose derivatives and their applications
Xyloglucans

Cellulosic, i.e. \((1\rightarrow4)-\beta-D\)-glucopyranan, backbone decorated with \(\alpha-D\)-xylopyranose residues at position 6

Very tightly hydrogen-bonded to the cellulose microfibrils of the cell wall of plants ⇒ negatively affects extractability

Regularity in the distribution of side chains ⇒ 2 major types:

- **XXXG** (3 consecutive xylosylated glucopyranose residues separated by 1 unsubstituted glucopyranose residue) in cell wall of higher plants
- **XXGG**, in seeds of many plants

Xyloglucans

Gelling ability: used as thickening, stabilizing and gelling agent in food, textile sizing and weaving, adhesive or binding agent ⇒ XG from tamarind seed

➊ XG significantly decreases retrogradation and syneresis of starch paste

Modified tamarind seed XG can form reversible gels upon heating and cooling

Potential application: adhesive properties ⇒ wet-end additive in paper-making
Outline

• Sources, characteristics and common properties
• Xylans
• Mannans
• Xyloglucans
• Mixed-linkage β–D-glucans
• Hemicellulose derivatives and their applications

β-glucans

Mixed linkages (1→3, 1→4)β–D-glucans, found in cereal grains
Principal molecules associated with cellulose microfibrils during cell-growth

Interest arose because of:
• problems caused in brewing and animal feed industry
• health benefits (cholesterol reduction, regulation of postgrandial serum glucose levels, immunostimulatory activity)
β-glucans

Extraction from cereal grains more difficult than other hemicelluloses from woody tissues (removal of starch, lipids, proteins, phenolics)

Aggregates even in dilute solutions

Potential applications:
 • Accepted as functional bioactive ingredients
 • interactions with starch (reduced enthalpy of starch gelatinization, reduced swelling of starch granule)
 • Viscosity enhancing effect: thickening agent for gravies, salad dressings or ice-cream formulations; stabilization of emulsions and foams
 • Change in the perception of mouth-feel for beverages

Outline

• Sources, characteristics and common properties
• Xylans
• Mannans
• Xyloglucans
• Mixed-linkage β–D-glucans
• Hemicellulose derivatives and their applications
Hemicellulose derivatives

- Etherification, cationic hemicelluloses, esterification, specific C6 oxidation of guar, hydroxypropyl derivatives, carboxymethyl derivatives

- Enhanced emulsifying and protein-foams stabilizing properties; modified swelling power, solubility and tolerance to organic solvents

Hemicellulose derivatives

Case study: Xylophane AB

1- Study of acetylation of glucuronoxylan from aspen wood

High degree of acetylation ⇄ soluble only in aprotic solvents (non-acetylated glucuronoxylan is partially soluble in hot water), lower water content, acetylation prevents thermal degradation, glass transition temperature making it possible to thermoprocess acetylated glucuronoxylan

2- Modification of the process

3- Final product

Films with efficient barrier against oxygen, grease and aroma ⇄ prolongation of shelf life food stuffs
Summary

- Great structural diversity
- Under exploited at industrial scale (except gums)
- Great potential resources (agriculture by-products)
- Potential applications in food science